On L_{p}-Boundedness of the L_{2}-Projector onto Splines

Aleksei Shadrin
Computing Center, Siberian Branch, Russian Academy of Sciences, Novosibirsk 630090, Russia
Communicated by Carl de Boor

Received November 19, 1991; accepted in revised form January 29, 1993

Abstract

In this paper we offer a new approach to C. de Boor's conjecture of the L_{x}-boundedness of the L_{2}-projector P_{s} onto the spline space $S_{m-1}\left(\Delta_{n}\right)$. This approach is based on the strengthening of the "exponential decay" property of the fundamental spline. It is proved, first, that the L_{p}-norm of the operator P_{S} is uniformly bounded without any restrictions on the mesh Δ_{n} at least in some neighbourhood of $p=2$ and, second, that the L_{p}-norm of the operator P_{S} for all $p \in[1, \infty]$ is uniformly bounded in meshes Δ_{n} with a fixed number of nodes n. © 1994 Academic Press, Inc.

1. Introduction

For a given partition of the interval $[a, b]$

$$
\Delta_{n}=\left\{a=t_{0}<t_{1}<\cdots<t_{n}=b\right\}
$$

denote by $S_{m-1}\left(\Delta_{n}\right)$ the space of splines of degree $m-1$ with deficiency 1 on the mesh Δ_{n} and consider the operator P_{S} of orthogonal projection onto $S_{m-1}\left(\Delta_{n}\right)$, defined by

$$
\int_{a}^{b}\left[f(t)-P_{S}(f, t)\right] \sigma(t) d t=0 \quad \forall \sigma \in S_{m-1}\left(\Delta_{n}\right) .
$$

We are interested in the norm of P_{S} as an operator from L_{p} on L_{p}, i.e., in the quantity

$$
\begin{equation*}
l_{m-1}\left(\Delta_{n}\right)_{p}=\sup _{\|f\|_{p} \leqslant 1}\left\|P_{S_{m-1}\left(\Delta_{n}\right)}(f)\right\|_{p}, \quad p \in[1, \infty] . \tag{1}
\end{equation*}
$$

In the study of this quantity the main guide line is given by the following

Conjecture [3]. For each $m \in \mathbb{N}$ there is a constant c_{m} such that for all $n \in \mathbb{N}$ and $\Delta_{n} \subset[a, b]$

$$
l_{m-1}\left(\Delta_{n}\right)_{p} \leqslant c_{m}, \quad p \in[1, \infty] .
$$

This conjecture is valid for $m=1,2,3$ (see [4]). For $m \geqslant 4$, all known estimates of (1) depend on either parameters of the mesh Δ_{n}. The most improved one which is also due to C . de Boor, looks as follows. Set

$$
\kappa_{i}:=t_{i+m}-t_{i}, \quad 1 / p^{\prime}:=1-1 / p, \quad z_{+}:=\max (0, z) .
$$

Theorem [5]. For any $m \in \mathbb{N}$ and arbitrary mesh $A_{n} \subset[a, b]$

$$
l_{m-1}\left(A_{n}\right)_{p} \leqslant c_{m} \max _{i, j}\left(\kappa_{i} \kappa_{j}^{-1}\right)^{\theta_{0}}, \quad p \in[1, \infty],
$$

where

$$
\theta_{0}:=(1 / 2-1 / p)_{+}+\left(1 / 2-1 / p^{\prime}\right)_{+} .
$$

The main result of this paper is
Theorem 1. For any $m \in \mathbb{N}$ there exists $\varepsilon_{m}>0$ such that for each $0 \leqslant \varepsilon<\varepsilon_{m}$ and arbitrary mesh $\Delta_{n} \subset[a, b]$

$$
l_{m-1}\left(\Delta_{n}\right)_{p} \leqslant c_{m, \varepsilon} \max _{i, j}\left(\kappa_{i} \kappa_{j}^{-1}\right)^{\theta}, \quad p \in[1, \infty],
$$

where

$$
\theta:=\theta_{\varepsilon}:=(1 / 2-\varepsilon-1 / p)_{+}+\left(1 / 2-\varepsilon-1 / p^{\prime}\right)_{+} ;
$$

in particular for each $0 \leqslant \varepsilon<\varepsilon_{m}$, uniformly in $n \in \mathbb{N}$ and $\Delta_{n} \subset[a, b]$,

$$
l_{m-1}\left(\Delta_{n}\right)_{p} \leqslant c_{m, \varepsilon}, \quad p \in\left[2-\frac{4 \varepsilon}{1+2 \varepsilon}, 2+\frac{4 \varepsilon}{1-2 \varepsilon}\right] .
$$

In addition we prove
Theorem 2. For any $m \in \mathbb{N}$ there exist $\zeta_{m}, c_{m}<\infty$ such that for any $n \in \mathbb{N}$, uniformly in $\Delta_{n} \subset[a, b]$,

$$
l_{m-1}\left(\Delta_{n}\right)_{p} \leqslant c_{m}\left(\zeta_{m}\right)^{n}, \quad p \in[1, \infty] .
$$

Thus, it follows that, first of all, the L-norm of the operator P_{S} of orthogonal spline projection is uniformly bounded without any restrictions on the mesh Δ_{n} in some neighbourhood of $p=2$ and, second, the L_{p}-norm of the operator P_{S} for all $p \in[1, \infty]$ is uniformly bounded in meshes Δ_{n} with a fixed number of nodes n.

2. Proof of Theorem 1

In Section 3 we construct an orthonormal basis $\varphi=\left\{\varphi_{i}\right\}_{i=1}^{n+m-1}$ for the space $S_{m-1}\left(\Delta_{n}\right)$, and in Sections 4-6 we show that its elements satisfy the following exponential estimate for decay of L_{p}-norms taken over the subintervals of the mesh Δ_{n}.

Set

$$
\kappa_{\max }:=\max _{i} \kappa_{i}, \quad \kappa_{\min }:=\min _{i} \kappa_{i}, \quad \sigma_{m}:=\kappa_{\max } \kappa_{\min }^{-1}
$$

Lemma 1. For any $m \in \mathbb{N}$ there exists $\varepsilon_{m}>0$ such that for any $0 \leqslant \varepsilon<\varepsilon_{m}$ there exists $\lambda=\lambda_{\varepsilon}<1$, for which for arbitrary mesh $\Delta_{n} \subset[a, b]$ for all amissible i, j,

$$
\begin{align*}
\left\|\varphi_{i}\right\|_{L_{p}\left[f, t_{j+1}\right]} \leqslant & c_{m} \lambda_{\varepsilon}^{|i-j|}\left\|\varphi_{i}\right\|_{L_{2}[0,1]} \\
& \times \begin{cases}\kappa_{i-m}^{-\varepsilon} \kappa_{\min }^{-\theta}, & 0 \leqslant \frac{1}{p}<\frac{1}{2}-\varepsilon ; \\
\kappa_{i-m}^{1 / p-1 / 2}, & \frac{1}{2}-\varepsilon \leqslant \frac{1}{p} \leqslant \frac{1}{2}+\varepsilon ; \\
\kappa_{i-m}^{\varepsilon} \kappa_{\max }^{\theta}, & \frac{1}{2}+\varepsilon<\frac{1}{p} \leqslant 1 .\end{cases} \tag{2}
\end{align*}
$$

Assuming this estimate proved, write down the standard expression for the orthoprojection of the function $f \in L_{p}$ onto the space $S_{m-1}\left(\Delta_{n}\right)$ in terms of the elements of the orthonormal basis φ :

$$
P_{S}(f, x)=\sum_{i=1}^{N} \varphi_{i}(x) \int_{a}^{b} \varphi_{i}(t) f(t) d t
$$

where $N=n+m-1$. For $p \in[1, \infty], 1 / p^{\prime}=1-1 / p$ set

$$
\|\cdot\|_{l}=\|\cdot\|_{L_{p}\left[t, t_{i+1}\right]}, \quad\|\cdot\|_{l}^{\prime}=\|\cdot\|_{L_{p}\left[t, t_{l+1}\right]}
$$

Then, by virtue of Hölder and Minkowski inequalities with the help of (2) we obtain

$$
\begin{aligned}
\left\|P_{s}(f, \cdot)\right\|_{k} & \leqslant \sum_{i=1}^{N}\left\|\varphi_{i}\right\|_{k} \sum_{j=0}^{n-1}\left\|\varphi_{i}\right\|_{j}^{\prime}\|f\|_{j} \\
& \leqslant c_{m} \sigma_{m}^{\theta} \sum_{i=1}^{N} \lambda^{|i-k|} \sum_{j=0}^{n-1} \lambda^{|i-j|}\|f\|_{j} \\
& =c_{m} \sigma_{m}^{\theta} \sum_{j=0}^{n-1}\|f\|_{j} \sum_{i=1}^{N} \lambda^{|i-k|} \lambda^{|i-j|} \\
& \leqslant c_{m, \varepsilon} \sigma_{m}^{\theta} \sum_{j=0}^{n-1}|k-j| \lambda^{|k-j|}\|f\|_{j}
\end{aligned}
$$

i.e.,

$$
\left\|P_{S}(f, \cdot)\right\|_{k} \leqslant c_{m, \varepsilon} \sigma_{m}^{\theta} \sum_{j=0}^{n-1}|k-j| \lambda^{|k-j|}\|f\|_{j}
$$

In the final estimate we use Young's inequality:

$$
\begin{aligned}
\left\|P_{s}(f, \cdot)\right\|_{p}= & \left\{\sum_{k=0}^{n-1}\left\|P_{s}(f, \cdot)\right\|_{k}^{p}\right\}^{1 / p} \\
\leqslant & c_{m, \varepsilon} \sigma_{m}^{\theta}\left\{\sum_{k=0}^{n-1}\left(\sum_{j=0}^{n-1}|k-j| \lambda^{|k-j|}\|f\|_{j}\right)^{p}\right\}^{1 / p} \\
\leqslant & c_{m, \varepsilon} \sigma_{m}^{\theta}\left\{\sum_{j=0}^{n-1}\|f\|_{j}^{p}\right\}^{1 / p} \\
& \times\left(\sup _{j}^{n-1} \sum_{k=0}^{n-j \mid} \mid k \lambda^{|k-j|}\right)^{1 / p} \\
& \times\left(\sup _{k}^{n-1} \sum_{j=0}^{n}|k-j| \lambda^{|k-j|}\right)^{1 / p^{\prime}} \\
\leqslant & c_{m, \varepsilon}^{\prime} \sigma_{m}^{\theta}\|f\|_{p}
\end{aligned}
$$

Theorem 1 is proved.

3. An Orthogonal Basis for $S_{m-1}\left(A_{n}\right)$

We obtain a desired orthogonal spline basis as derivatives of appropriate fundamental splines; this idea goes back to J. H. Ahlberg and E. N. Nilson [1].

Complete the mesh Δ_{n} with the points $\left\{t_{-v}\right\}_{v=1}^{m-1}$ and $\left\{t_{n+v}\right\}_{v=1}^{m-1}$ which coincide with the endpoints of the interval $[a, b]$:

$$
t_{-v}=t_{0}=a, \quad t_{n+v}=t_{n}=b, \quad v=\overline{1, m-1}
$$

and denote the extension again by Δ_{n}.
Consider the family of splines $\Phi=\left\{\Phi_{i}\right\}_{i=1}^{n+m-1}$ of degree $2 m-1$ from the set $S_{2 m-1}\left(A_{n}\right)$, defined by

$$
\Phi_{i}=\arg \min _{g \in W_{2}^{m}}\left\{\left\|g^{(m)}\right\|_{2}: g\left(t_{j}\right)=\delta_{i j}, j=\overline{-m+1, i}\right\}
$$

Here, it is implied that

$$
\begin{array}{rll}
\Phi_{i}^{(\mu)}(a) & =0, & \mu=\overline{0, m-1},
\end{array} \quad i=\overline{1, n+m-1} ; ~=\overline{1, m-1} .
$$

These are the fundamental splines on the widening meshes

$$
\Delta_{n i}=\Delta_{n} \cap\left[t_{-m+1}, t_{i}\right],
$$

which satisfy, besides the above interpolating conditions, the following boundary conditions

$$
\begin{array}{lll}
\Phi_{i}^{(m+\mu)}\left(t_{i}\right)=0, & \mu=\overline{0, m-2}, & i=\overline{1, n} ; \\
\Phi_{n+v}^{(m+\mu)}(b)=0, & \mu=\overline{0, m-2-v}, & v=\overline{1, m-2} .
\end{array}
$$

Using the equalities

$$
\left.\Phi_{i}\right|_{\Delta_{n j}}=0, \quad i>j,
$$

it is not hard to verify that the family Φ with number of elements $n+m-1$, which is equal to the dimension of the space $S_{m-1}\left(\Delta_{n}\right)$, turns out to be a system, orthogonal with respect to the inner product

$$
\left(\Phi_{i}, \Phi_{j}\right)=\int_{a}^{b} \Phi_{i}^{(m)}(t) \Phi_{j}^{(m)}(t) d t
$$

Hence, it follows that the system $\varphi=\left\{\varphi_{i}\right\}_{i=1}^{n+m-1}$, consisting of the elements

$$
\varphi_{i}:=\Phi_{i}^{(m)} /\left\|\Phi_{i}^{(m)}\right\|_{2}
$$

is an orthonormal basis for $S_{m-1}\left(A_{n}\right)$.
The classical basis for the space $S_{m-1}\left(\Delta_{n}\right)$ is the one $\left\{N_{j}\right\}_{j=-m+1}^{n-1}$ of B-splines with minimal supports:

$$
\operatorname{supp} N_{j}=\left(t_{j}, t_{j+m}\right) .
$$

Since

$$
\operatorname{supp} \varphi_{i}=\left(t_{-m+1}, t_{i}\right),
$$

the system $\varphi=\left\{\varphi_{i}\right\}_{i=1}^{n+m-1}$ constructed is the result of the Gram-Schmidt orthogonalization process applied to the basis of B-splines.

4. Proof of Lemma 1 for $p \geqslant 2$

In this section we derive the estimate (2) for $p \in[2, \infty]$. The arguments used are based in turn on two statements which are proved in Section 6.

Lemma 2. For all $p \in[2, \infty]$ and all $j<i$

$$
\left\|\varphi_{i}\right\|_{L_{p}\left[t_{j}, t_{j+1}\right]}^{2} \leqslant c_{m} \sum_{j^{\prime}} \kappa_{j^{\prime}}^{-1+2 / p}\left\|\varphi_{i}\right\|_{L_{2}\left[f_{j}^{\prime}, t_{j}^{\prime}+m\right]}^{2}
$$

where the sum is over all indices j^{\prime} such that

$$
\begin{equation*}
\left[t_{j^{\prime}}, t_{j^{\prime}+m}\right] \supset\left[t_{j}, t_{j+1}\right], \quad j^{\prime}+m \leqslant i . \tag{3}
\end{equation*}
$$

Lemma 3. There exists $\beta_{1}=\beta_{1}(m)$, for which, for all v such that $t_{v+1} \leqslant t_{i}$,

$$
\left\|\varphi_{i}\right\|_{L_{2}\left[0, t_{v}\right]}^{2} \leqslant \beta_{1}^{-1}\left(1+\kappa_{v-m}^{-1} \kappa_{v-m+1}\right)^{-1}\left\|\varphi_{i}\right\|_{L_{2}\left[t_{v-m+1}, t_{v+1}\right]}^{2}
$$

The "one-sided" character of the statements presented is connected with special features of the splines φ_{i} : from the definition $\varphi_{i}(x) \equiv 0$ for $x \geqslant t_{i}$; thus the estimate (2) is to be proved only for indices $j<i$. Just the same statements (with corresponding changes in formulations) are valid for the m th derivatives of the usual "two-sided" fundamental splines.

Put

$$
\eta:=\eta_{\varepsilon}:=\min \{\varepsilon,|1 / 2-1 / p|\}
$$

thus, in the case $p \geqslant 2$ we have

$$
\begin{aligned}
\theta & =\theta_{\varepsilon}=(1 / 2-\varepsilon-1 / p)_{+}, \\
\eta & =\eta_{\varepsilon}=\min (\varepsilon, 1 / 2-1 / p) \\
1 / 2-1 / p & =\theta+\eta
\end{aligned}
$$

Now the estimate (2) for $p \geqslant 2$ is deduced in two steps.
(A) The case $j>i-2 m$, and hence $\min _{(3)} j^{\prime}>i-3 m$.

Applying Lemma 3 as much as it is required, we have

$$
\left\|\varphi_{i}\right\|_{L_{2}\left[0, t_{j^{\prime}+m}\right]}^{2} \leqslant \beta_{1}^{-\left|i-j^{\prime}-m\right|}\left(1+\kappa_{j^{\prime}}^{-1} \kappa_{i-m}\right)^{-1}\left\|\varphi_{i}\right\|_{L_{2}\left[0, t_{i}\right]}^{2}
$$

whence for all $0 \leqslant \varepsilon \leqslant \frac{1}{2}$ and $\lambda<1$

$$
\begin{aligned}
\kappa_{j^{\prime}}^{-1}+ & +2 / p\left\|\varphi_{i}\right\|_{L_{2}\left[t_{j}^{\prime}, t^{\prime}+m\right]}^{2 m} \\
& \leqslant \max \left(1, \beta_{1}^{-2 m}\right) \kappa_{j^{\prime}}^{-2 \theta} \kappa_{j^{\prime}}^{-2 \eta}\left(1+\kappa_{j^{\prime}}^{-1} \kappa_{i-m}\right)^{-1}\left\|\varphi_{i}\right\|_{L_{2}\left[0, t_{i}\right]}^{2} \\
& \leqslant \max \left(1, \beta_{1}^{-2 m}\right) \lambda^{-2 m} \lambda^{|i-j|} \kappa_{\min }^{-2 \theta} \kappa_{i-m}^{-2 \eta}\left\|\varphi_{i}\right\|_{L_{2}\left[0, t_{i}\right]}^{2}
\end{aligned}
$$

and to get the estimate (2) we have only to use Lemma 2.
(B) The case $j \leqslant i-2 m$, and hence $\max _{(3)} j^{\prime} \leqslant i-2 m$.

From Lemma 3 it follows that there exists β,

$$
\beta=\beta_{m} \leqslant \beta_{1}^{m}
$$

for which for all v, such that $t_{v+m} \leqslant t_{i}$, the inequality

$$
\begin{equation*}
\left\|\varphi_{i}\right\|_{L_{2}\left[0, t_{v}\right]}^{2} \leqslant \beta^{-1}\left(1+\kappa_{v-m}^{-1} \kappa_{v}\right)^{-1}\left\|\varphi_{i}\right\|_{L_{2}\left[t_{v}, t_{v+m}\right]}^{2} \tag{4}
\end{equation*}
$$

is valid. With regard for the representation

$$
\left\|\varphi_{i}\right\|_{L_{2}\left[0, t_{v}\right]}^{2}=\left\|\varphi_{i}\right\|_{L_{2}\left[0, t_{v-m}\right]}^{2}+\left\|\varphi_{i}\right\|_{L_{2}\left[t_{v-m}, t_{v}\right]}^{2}
$$

series of such inequalities with $v \in\left\{j^{\prime}+\mu m\right\}_{\mu=0}^{\infty}$ implies the following estimate.
(b) For all j^{\prime}, such that $j^{\prime} \leqslant i-2 m$,

$$
\begin{aligned}
\left\|\varphi_{i}\right\|_{L_{2}\left[t_{j}, t_{j}+m\right]}^{2} \leqslant & \left\|\varphi_{i}\right\|_{L_{2}\left[0, t_{j}+m\right]}^{2} \\
\leqslant & \left\{\prod_{\mu=0}^{k_{i j}}\left(1+\beta\left(1+\kappa_{j^{\prime}+\mu m}^{-1} \kappa_{j^{\prime}+(\mu+1) m}\right)\right)\right\}^{-1} \\
& \times\left\|\varphi_{i}\right\|_{L_{2}\left[0, t_{i^{\prime}+m}\right]}^{2} .
\end{aligned}
$$

Here, $k_{i j}=\left(i^{\prime}-j^{\prime}\right) / m$, and i^{\prime} is such of indices from the sequence $\left\{j^{\prime}+\mu m\right\}_{\mu=0}^{\infty}$ that

$$
i-2 m<i^{\prime} \leqslant i-m
$$

Hence, for the sake of brevity putting $\rho_{i}=\kappa_{i} \kappa_{i+m}^{-1}$, we have

$$
\begin{align*}
\kappa_{j^{\prime}}^{-1+} & +2 / p
\end{align*}\left\|\varphi_{i}\right\|_{L_{2}\left[t^{\prime}, t_{j^{\prime}+m}\right]}^{2} .
$$

The first multiplier in the right-hand side is treated trivially

$$
\kappa_{j^{\prime}}^{-2 \theta} \leqslant \kappa_{\min }^{-2 \theta} .
$$

Considering the second one, define for $p \geqslant 2$ the value ε_{m}^{*} as an upper bound for such $\varepsilon \geqslant 0$ which satisfy

$$
\begin{equation*}
\min _{\rho>0}\left((1+\beta) \rho^{2 \varepsilon}+\beta \rho^{2 \varepsilon-1}\right) \geqslant 1+\delta_{\varepsilon} \tag{6}
\end{equation*}
$$

with some $\delta_{\varepsilon}>0$. The value of the minimum for $0 \leqslant 2 \varepsilon \leqslant 1$ is equal to

$$
[\beta / 2 \varepsilon]^{2 \varepsilon}[(1+\beta) /(1-2 \varepsilon)]^{1-2 \varepsilon} ;
$$

whence

$$
\min (1, \beta) \leqslant 2 \varepsilon_{m}^{*} \leqslant 1
$$

Hence for any $\varepsilon \in\left[0, \varepsilon_{m}^{*}\right)$ the majorant for the expression in the curly braces is just the quantity

$$
\lambda_{\varepsilon}^{\left|i^{\prime}-j^{\prime}\right|}:=\left(1+\delta_{\varepsilon}\right)^{-(1 / m)\left|i^{\prime}-j^{\prime}\right|} .
$$

An estimate for the last multiplier in (5) is obtained from (A):

$$
\begin{aligned}
\kappa_{i^{\prime}}^{-2 \eta} & \left\|\varphi_{i}\right\|_{L_{2}\left[0, t_{i}+m\right]}^{2} \\
& \leqslant \max \left(1, \beta_{1}^{-m}\right) \lambda_{\varepsilon}^{-m} \lambda_{\varepsilon}^{\left|i-i^{\prime}\right|} \kappa_{i-m}^{-2 \eta}\left\|\varphi_{i}\right\|_{L_{2}\left[0, t_{i}\right]}^{2}
\end{aligned}
$$

Linking all estimates in one, from (5) with regard for the inequality $\left|j-j^{\prime}\right|<m$, we find

$$
\begin{aligned}
& \kappa_{j^{\prime}}^{-1+2 i p}\left\|\varphi_{i}\right\|_{L_{2}\left[0, r^{\prime}+m\right]}^{2} \\
& \quad \leqslant \max \left(1, \beta_{1}^{-m}\right) \lambda_{\varepsilon}^{-2 m} \lambda_{\varepsilon}^{|i-j|} \kappa_{\min }^{-2 \theta} \kappa_{i-m}^{-2 \eta}\left\|\varphi_{i}\right\|_{L_{2}\left[0, t_{i}\right]}^{2}
\end{aligned}
$$

and for the final estimate (2) we refer to Lemma 2 once more. Thus, Lemma 1 for the case $p \geqslant 2$ is proved with $\varepsilon_{m}=\varepsilon_{m}^{*}$.

If we set in (5) $p=\infty, \varepsilon=\frac{1}{2}$, then we come to the relation

$$
\begin{equation*}
\left\|\varphi_{i}\right\|_{L_{x}\left[t_{i}, t_{j+1}\right]}^{2} \leqslant c_{m} \beta_{m}^{-|i--j| / m} \kappa_{i-m}^{-1}\left\|\varphi_{i}\right\|_{L_{2}\left[0, t_{i}\right]}^{2} \tag{7}
\end{equation*}
$$

which makes evident that $L_{\infty}^{(m)}$-norms of fundamental spline taken over the subintervals of arbitrary mesh Δ_{n}, if suitably normalized, are at least finite, and if the constant $\beta=\beta_{m}$, defined from inequality (4), satisfies the estimate $\beta>1$, then such norms have exponential decay.

5. Proof of Lemma 1 for $p \leqslant 2$

To derive the estimate (2) for $p \leqslant 2$ we use just the same approach as in the previous case; however, the technical details differ somewhat. The corresponding auxiliary statements are the following.

Lemma 2'. For all $p \in[1,2]$ and all $j<i-m$

$$
\left\|\varphi_{i}\right\|_{L_{p}\left[l_{j}, t_{j+1}\right]}^{2} \leqslant \kappa_{j}^{2 / p-1}\left\{\prod_{j}\left\|\varphi_{i}\right\|_{L_{2}\left[t_{j}, t_{j}+m\right]}^{2}\right\}^{1 / m}
$$

where multiplication is over all indices j^{\prime} such that

$$
\left[t_{j^{\prime}}, t_{j^{\prime}+m}\right] \supset\left[t_{j}, t_{j+1}\right], \quad j^{\prime}+m \leqslant i .
$$

Unlike Lemma 2, this statement can be readily proved, since

$$
\left\|\varphi_{i}\right\|_{L_{p}\left[t_{j}, t_{j+1}\right]}^{2} \leqslant h_{j}^{2 / p-1}\left\|\varphi_{i}\right\|_{L_{2}\left[t_{j}, t_{j+1}\right]}^{2},
$$

and we have only to majorize the right-hand side.

Lemma 3'. There exists $\beta_{1}=\beta_{1}(m)$, for which, for all v such that $t_{v+m} \leqslant t_{i}$,

$$
\left\|\varphi_{i}\right\|_{L_{2}\left[0, t_{v}\right]}^{2} \leqslant \beta_{1}^{-1}\left(1+\kappa_{v-1} \kappa_{v}^{-1}\right)^{-1}\left\|\varphi_{i}\right\|_{L_{2}\left[t_{v}, t_{v}+m\right]}^{2}
$$

Let us proceed with the proof of (2) for $p \leqslant 2$. Now

$$
\theta=\theta_{\varepsilon}=(1 / p-1 / 2-\varepsilon)_{+}, \quad \eta=\eta_{\varepsilon}=\min (\varepsilon, 1 / p-1 / 2)
$$

therefore,

$$
1 / p-1 / 2=\theta+\eta
$$

($\left.\mathrm{A}_{1}^{\prime}\right) \quad$ The case $j \geqslant i-m$.
The estimate (2) is evident: for all $0 \leqslant \varepsilon \leqslant \frac{1}{2}$ and $\lambda<1$

$$
\begin{aligned}
\left\|\varphi_{i}\right\|_{L_{p}\left[t, t_{i}+1\right]}^{2} & \leqslant \kappa_{i-m}^{2 / p-1}\left\|\varphi_{i}\right\|_{L_{2}\left[0, i_{i}\right]}^{2} \\
& \leqslant \lambda^{-m} \lambda^{|i-j|} \kappa_{\max }^{2 \theta} \kappa_{i-m}^{2 \eta}\left\|\varphi_{i}\right\|_{L_{2}\left[0, \iota_{i}\right]}^{2} .
\end{aligned}
$$

(A_{2}^{\prime}) The case $i-2 m \leqslant j<i-m$.
Divide the indices j^{\prime} satisfying (3^{\prime}) into two parts. For the first one write the trivial estimate

$$
\left\|\varphi_{i}\right\|_{L_{2}\left[j^{\prime}, t_{j}+m\right]}^{2} \leqslant\left\|\varphi_{i}\right\|_{L_{2}\left[0, t_{t}\right]}^{2}, \quad i-2 m<j^{\prime} \leqslant i-m,
$$

and for the second by virtue of Lemma 3'-the inequality

$$
\begin{gathered}
\left\|\varphi_{i}\right\|_{L_{2}\left[t_{j}, t^{\prime}+m\right]}^{2} \leqslant \beta_{1}^{-1}\left(1+\kappa_{j^{\prime}+m-1} \kappa_{j^{\prime}+m}^{-1}\right)^{-1}\left\|\varphi_{i}\right\|_{L_{2}\left[0, t_{i}\right]}^{2}, \\
i-3 m<j^{\prime} \leqslant i-2 m .
\end{gathered}
$$

Multiplying the left- and the right-hand sides of the above relations over the indices $j^{\prime}=\overline{j-m+1, j}$, we obtain

$$
\begin{aligned}
\prod_{j^{\prime}}\left\|\varphi_{i}\right\|_{L_{2}\left[t^{\prime}, j^{\prime}+m\right]}^{2} & \leqslant\left\|\varphi_{i}\right\|_{L_{2}\left[0, i_{i}\right]}^{2 m} \prod_{\mu=j^{\prime}+m}^{i-m} \beta_{1}^{-1}\left(1+\kappa_{\mu-1} \kappa_{\mu}^{-1}\right)^{-1} \\
& \leqslant \max \left(1, \beta_{1}^{-m}\right)\left(1+\kappa_{j-1} \kappa_{i-m}^{{ }^{\prime}}\right)^{1}\left\|\varphi_{i}\right\|_{L_{2}\left[0, t_{i}\right]}^{2 m}
\end{aligned}
$$

Extracting the roots of m th degree and applying Lemma 2^{\prime}, find that for all $0 \leqslant \varepsilon \leqslant 1 / 2 m$ and $\lambda<1$

$$
\begin{aligned}
&\left\|\varphi_{i}\right\|_{L_{p}[t, i, j+1]}^{2} \\
& \leqslant \max \left(1, \beta_{1}^{-1}\right) \kappa_{j}^{2 \theta} \kappa_{j}^{2 \eta}\left(1+\kappa_{j-1} \kappa_{i-m}^{-1}\right)^{-1 / m}\left\|\varphi_{i}\right\|_{L_{2}\left[0, t_{i}\right]}^{2} \\
& \leqslant \max \left(1, \beta_{1}^{-1}\right) \lambda^{-2 m} \lambda^{i-j \mid} \kappa_{\max }^{2 \theta} \kappa_{i-m}^{2 \eta}\left\|\varphi_{i}\right\|_{L_{2}\left[0, t_{i}\right]}^{2} .
\end{aligned}
$$

(B') The case $j<i-2 m$, and hence, $\max _{\left(3^{\prime}\right)} j^{\prime}<i-2 m$.
For $1 \leqslant s \leqslant m$ put $j_{s}^{\prime}:=j-m+s$ and (like in Section 4) denote by i_{s}^{\prime} an index from the sequence $\left\{j_{s}^{\prime}+\mu m\right\}_{\mu=0}^{\infty}$ such that

$$
i-2 m<i_{s}^{\prime} \leqslant i-m .
$$

With regard to the representation

$$
\left\|\varphi_{i}\right\|_{L_{2}\left[0, t_{v}\right]}^{2}=\left\|\varphi_{i}\right\|_{L_{2}\left[0, t_{v-m}\right]}^{2}+\left\|\varphi_{i}\right\|_{L_{2}\left[t_{v-m}, t_{v}\right]}^{2}
$$

the reiterated use of Lemma 3' gives

$$
\text { (} b_{1}^{\prime} \text {) For all } j_{s}^{\prime} \text {, such that } j_{s}^{\prime}<i-2 m \text {, }
$$

$$
\begin{aligned}
\left\|\varphi_{i}\right\|_{L_{2}\left[t_{j}, t_{j j+m}\right]}^{2} & \leqslant\left\|\varphi_{i}\right\|_{L_{2}\left[0, t_{j}+m\right]}^{2} \\
\leqslant & \left\{\prod_{\mu=0}^{\kappa_{i j}}\left(1+\beta_{1}\left(1+\kappa_{j_{s}+\mu m-1} \kappa_{j_{j}+\mu m}^{-1}\right)\right)\right\}^{-1} \\
& \times\left\|\varphi_{i}\right\|_{L_{2}\left[0, t_{i j}\right]}^{2} .
\end{aligned}
$$

Multiplying the left- and the right-hand sides of these inequalities over $j_{s}^{\prime}=\overline{j-m+1, j}$, we have
(b_{2}^{\prime}) For $j<i-2 m$ and j^{\prime} such that $j-m<j^{\prime} \leqslant j$,

$$
\prod_{j}\left\|\varphi_{i}\right\|_{L_{2}\left[t_{j}, t_{j}+m\right]}^{2} \leqslant\left\{\prod_{v=j}^{i-m}\left(1+\beta_{1}\left(1+\kappa_{v-1} \kappa_{v}^{-1}\right)\right)\right\}^{-1}\left\|\varphi_{i}\right\|_{L_{2}\left[0, t_{1}\right]}^{2 m}
$$

Further, extract the root of m th degree and repeat the arguments from Section 4. Moreover, the limiting value $\varepsilon_{m}^{* *}$, which implies for $\frac{1}{2} \leqslant 1 / p<$ $\frac{1}{2}+\varepsilon_{m}^{* *}$ the exponential estimate of L_{p}-norms of φ_{i}, is defined as an upper bound of ε such that

$$
\begin{equation*}
\min _{\rho>0}\left(\left(1+\beta_{1}\right) \rho^{2 m \varepsilon}+\beta_{1} \rho^{2 m \varepsilon-1}\right) \geqslant 1+\delta_{\varepsilon}, \tag{6'}
\end{equation*}
$$

and it satisfies the inequality

$$
\min \left(1, \beta_{1}\right) \leqslant 2 m \varepsilon_{m}^{* *} \leqslant 1
$$

At last we obtain that for $\varepsilon \in\left[0, \varepsilon_{m}^{* *}\right)$

$$
\left\|\varphi_{i}\right\|_{L_{p}\left[t, t_{j}+1\right]}^{2} \leqslant \lambda_{\varepsilon}^{-m} \lambda_{\varepsilon}^{|i-j|} \kappa_{\max }^{2 \theta} \kappa_{i-m}^{2 \eta}\left\|\varphi_{i}\right\|_{L_{2}\left[0, t_{i}\right]}^{2},
$$

which completes the proof of Lemma 1 for $p \leqslant 2$ with $\varepsilon_{m}=\varepsilon_{m}^{* *}$.
Thus, we establish the estimate (2) with $\varepsilon_{m}=\min \left(\varepsilon_{m}^{*}, \varepsilon_{m}^{* *}\right)$, where the quantities ε_{m}^{*} and ε_{m}^{*} are define in relations (6) and (6^{\prime}) by values of the constants β and β_{1}, which in turn appear in the statements of Lemmas 3 and 3^{\prime} and in inequality (4).

These relations, however, have principal limitations (due to the methods of the proof) in the following sense. If in (6) the estimate $\beta>1$ is valid, then we obtain $\varepsilon_{m}^{*}=\frac{1}{2}$, and if we could get the same bound for the quantity $\varepsilon_{m}^{* *}$, then de Boor's conjecture would be proved. But in (6^{\prime}), whatever values the constant β_{1} takes, we cannot exceed the limit $\varepsilon_{m}^{* *}=\frac{1}{2 m}$. In particular, this drawback does not allow us to get the estimate for the $L_{1}^{(m)}$-norm similar to (7); therefore, to prove Theorem 2 we use other methods.

6. Proof of Main Inequalities

6.1. Auxiliary Statements

Set

$$
h_{v, r}=t_{v+r}-t_{v}, \quad h_{v}=h_{v, 1}
$$

Further, for the elements of the basis $\left\{N_{i}\right\}_{l=-m+1}^{n-1}$ of normalized B-splines which satisfy the conditions

$$
\operatorname{supp} N_{l}=\left(t_{l}, t_{l+m}\right), \quad \sum N_{l} \equiv 1
$$

define the splines

$$
\begin{equation*}
N_{l p}(\cdot)=m^{1 / p} \kappa_{l}^{-1 / p} N_{l}(\cdot), \quad p \in[1, \infty] \tag{8}
\end{equation*}
$$

While proving Lemmas $2,3,3^{\prime}$ we rely upon the following statements.

Lemma A. For any vector $a=\left(a_{i}\right)_{i=-m+1}^{n-1}$ for $p \in[1, \infty]$

$$
\begin{gather*}
D_{m}^{-1}\|a\|_{l_{p}} \leqslant\left\|\sum a_{l} N_{l p}\right\|_{L_{p}[0,1]} \leqslant\|a\|_{l_{p}}, \tag{9}\\
D_{m}^{-1} m^{1 / p}\left|a_{v}\right| \leqslant\left\|\sum a_{l} N_{l p}\right\|_{L_{p}\left[t_{v}, t_{v}+m\right]} .
\end{gather*}
$$

Lemma B. If $g \in W_{2}^{m}[0,1]$ and $g\left(t_{v+\mu}\right)=0, \mu=\overline{0, m-1}$, then

$$
\begin{gathered}
\left\|g^{(m-1-k)}\right\|_{L_{x}\left[t_{v}, t_{r+m-1}\right]} \leqslant c_{1, m, k} h_{v, m-1}^{k+1 / 2}\left\|g^{(m)}\right\|_{L_{2}\left[t_{v}, t_{r+m-1}\right]}, \\
k=\overline{0, m-1} .
\end{gathered}
$$

Lemma C. If $g \in \pi_{2 m-1}$ (i.e., is an algebraic polynomial of degree $2 m-1$), then

$$
\begin{gathered}
\left\|g^{(m+k)}\right\|_{L_{x}\left[t_{v}, t_{v}+1\right]} \leqslant c_{2, m, k} h_{v}^{-(k+1 / 2)}\left\|g^{(m)}\right\|_{L_{2}\left[t_{v}, t_{v}+1\right]}, \\
k=\overline{0, m-1} .
\end{gathered}
$$

The last auxiliary statement is concerned with the fundamental splines $\left\{\Phi_{i}\right\}_{i=1}^{n+m-1}$, which determine the orthonormal system $\varphi=\left\{\varphi_{i}\right\}_{i=1}^{n+m-1}$ by the rule $\varphi_{i}=\Phi_{i}^{(m)} /\left\|\Phi_{i}^{(m)}\right\|_{2}$.

Lemma D. There exists $\beta_{0}=\beta_{0}(m)$ for which, for all v such that $t_{v+m-1}<t_{i}$,

$$
\left\|\Phi_{i}^{(m)}\right\|_{L_{2}\left[0, t_{v}\right]}^{2} \leqslant \beta_{0}^{-1}\left\|\Phi_{i}^{(m)}\right\|_{L_{2}\left[t_{v}, t_{v+m-1}\right]}^{2} .
$$

Lemma A is due to C. de Boor [6]. Lemma B, if we do not care for exact constants, is elementarily proved by virtue of the Rolle theorem. Lemma C is a Markov-type inequality for different metrics and when exact constants are not required uses nothing more than finite dimensionality. Lemma D is what the "exponential decay" property of a fundamental spline is based on and is proved, e.g., in [9].

6.2. Proof of Lemma 2.

Expand the spline φ_{i} in the basis $\left\{N_{i p}\right\}$ for $p=2$:

$$
\varphi_{i}=\sum_{l=m+1}^{n-1} b_{l} N_{l 2}
$$

For a given j define the spline ψ_{j} by

$$
\psi_{j}=\sum_{l=j-m+1}^{j} b_{l} N_{l 2}
$$

Then $\psi_{j} \equiv \varphi_{i}$ in the interval $\left[t_{j}, t_{j+1}\right]$ and application of Lemma A for $p \geqslant 2$ gives

$$
\begin{aligned}
\left\|\varphi_{i}\right\|_{L_{p}\left[t_{j}, t_{j+1}\right]}^{2} & =\left\|\psi_{j}\right\|_{L_{p}\left[t_{j}, t_{j+1}\right]}^{2} \\
& \leqslant c_{m}\left\{\sum_{l=j-m+1}^{j}\left(\kappa_{l}^{-1+2 / p} b_{l}^{2}\right)^{p / 2}\right\}^{2 / p} \\
& \leqslant c_{m} \sum_{l=j-m+1}^{j} \kappa_{l}^{-1+2 / p} b_{l}^{2} \\
& \leqslant c_{m}^{\prime} \sum_{l=j-m+1}^{j} \kappa_{l}^{-1+2 / p}\left\|\varphi_{i}\right\|_{L_{2}[t, t i+m]}^{2}
\end{aligned}
$$

which is required.

6.3. Proof of Lemma 3.

Since

$$
\varphi_{i}=\Phi_{i}^{(m)} /\left\|\Phi_{i}^{(m)}\right\|_{2}
$$

it suffices to show that if v satisfies the condition $t_{v+1} \leqslant t_{i}$, then

$$
\begin{equation*}
\left\|\Phi_{i}^{(m)}\right\|_{L_{2}\left[0, t_{v}\right]}^{2} \leqslant \beta_{1}^{-1}\left(1+\kappa_{v-m}^{-1} \kappa_{v-m+1}\right)^{-1}\left\|\Phi_{i}^{(m)}\right\|_{L_{2}\left[t_{v-m+1}, t_{v+1}\right]}^{2} . \tag{10}
\end{equation*}
$$

Consider two possible variants of correlation between the parts $\left[t_{v}, t_{v+1}\right]$ and $\left[t_{v-m}, t_{v}\right]$ of the interval $\left[t_{v-m}, t_{v+1}\right]$.
(i) $h_{v} \leqslant \kappa_{v-m}$.

Then,

$$
\kappa_{v-m} \geqslant \frac{1}{2}\left(\kappa_{v-m}+h_{v}\right)=\frac{1}{2}\left(h_{v-m}+\kappa_{v-m+1}\right) \geqslant \frac{1}{2} \kappa_{v-m+1},
$$

i.e.,

$$
\kappa_{v-m}^{-1} \kappa_{v-m+1} \leqslant 2 .
$$

Combining this estimate with Lemma C , derive that

$$
\begin{aligned}
\left\|\Phi_{i}^{(m)}\right\|_{L_{2}\left[0, t_{v}\right]}^{2} & \leqslant\left(1+\beta_{0}^{-1}\right)\left\|\Phi_{i}^{(m)}\right\|_{L_{2}\left[t_{v-m+1}, t_{v}\right]}^{2} \\
& \leqslant\left(1+\beta_{0}^{-1}\right)\left\|\Phi_{i}^{(m)}\right\|_{L_{2}\left[t_{v-m+1}, t_{v+1}\right]}^{2} \\
& \leqslant 3\left(1+\beta_{0}^{-1}\right)\left(1+\kappa_{v-m}^{-1} \kappa_{v-m+1}\right)^{-1}\left\|\Phi_{i}^{(m)}\right\|_{L_{2}\left[t_{v-m+1}, t_{v+1}\right]}^{2}
\end{aligned}
$$

Thus, in case (i) estimate (10) holds with

$$
\begin{equation*}
\beta_{1}=\frac{1}{3}\left(1+\beta_{0}^{-1}\right)^{-1} \tag{11}
\end{equation*}
$$

(ii) $h_{v} \geqslant \kappa_{v-m}=h_{v-m}+h_{v-m+1, m-1}$.

The fundamental spline Φ_{i} has a piecewise polynomial structure and $\Delta_{n, i-1}$-mesh of zeroes. So, integrate the quantity $\left\|\Phi_{i}^{(m)}\right\|_{L_{2}\left[0, t_{v}\right]}^{2}$ by parts and apply Lemmas B and C:

$$
\begin{aligned}
\left\|\Phi_{i}^{(m)}\right\|_{L_{2}\left[0, t_{v}\right]}^{2}= & \sum_{k=0}^{m-1}(-1)^{k} \Phi_{i}^{(m-1-k)}\left(t_{v}\right) \Phi_{i}^{(m+k)}\left(t_{v}\right) \\
\leqslant & \sum_{k=0}^{m-1}\left\|\Phi_{i}^{(m-1-k)}\right\|_{L_{\alpha}\left[t_{v-m+1}, t_{v}\right]} \\
& \times\left\|\Phi_{i}^{(m+k)}\right\|_{L_{\infty}\left[t_{v}, t_{v}+1\right]} \\
\leqslant & \sum_{k=0}^{m-1} c_{1, m, k} c_{2, m, k}\left(h_{v-m+1, m-1} h_{v}^{-1}\right)^{k+1 / 2} \\
& \times\left\|\Phi_{i}^{(m)}\right\|_{L_{2}\left[t_{\left.v-m+1, t_{k}\right]}\left\|\Phi_{i}^{(m)}\right\|_{L_{2}\left[t_{v}, t_{v}+1\right]}\right.}^{\leqslant} \\
& 2^{1 / 2} c_{3, m} \kappa_{v-m}^{1 / 2} \kappa_{v-m+1}^{-1 / 2} \\
& \times\left\|\Phi_{i}^{(m)}\right\|_{L_{2}\left[0, t_{v}\right]}\left\|\Phi_{i}^{(m)}\right\|_{L_{2}\left[t_{v-m+1}, t_{v+1}\right]}
\end{aligned}
$$

In the final inequality of this series we had put

$$
c_{3, m}=\sum_{k=0}^{m-1} c_{1, m, k} c_{2, m, k}
$$

and had used the relations

$$
\begin{aligned}
& h_{v} \geqslant h_{v-m+1, m-1}, \quad \kappa_{v-m} \geqslant h_{v-m+1, m-1}, \\
& h_{v} \geqslant \frac{1}{2}\left(h_{v-m+1, m-1}+h_{v}\right)=\frac{1}{2} \kappa_{v-m+1},
\end{aligned}
$$

which followed from (ii).
Thus, we obtain

$$
\begin{aligned}
\left\|\Phi_{i}^{(m)}\right\|_{L_{2}\left[0, t_{v}\right]}^{2} & \leqslant 2 c_{3, m}^{2} \kappa_{v-m} \kappa_{v-m+1}^{-1}\left\|\Phi_{i}^{(m)}\right\|_{L_{2}\left[t_{v-m+1}, t_{v+1}\right]}^{2} \\
& \leqslant 4 c_{3, m}^{2}\left(1+\kappa_{v-m}^{-1} \kappa_{v-m+1}\right)^{-1}\left\|\Phi_{i}^{(m)}\right\|_{L_{2}\left[t_{v-m+1}, t_{v+1}\right]}^{2}
\end{aligned}
$$

i.e., the estimate (10) with such value for β_{1} :

$$
\begin{equation*}
\beta_{1}=\frac{1}{4}\left(\sum_{k=0}^{m-1} c_{1, m, k} c_{2, m, k}\right)^{-2} \tag{12}
\end{equation*}
$$

6.3. Proof of Lemma 3'.

We must show that under the condition $t_{v+m} \leqslant t_{i}$

$$
\left\|\Phi_{i}^{(m)}\right\|_{L_{2}\left[0, t_{v}\right]}^{2} \leqslant \beta_{1}^{-1}\left(1+\kappa_{v-1} \kappa_{1}^{-1}\right)^{-1}\left\|\Phi_{i}^{(m)}\right\|_{L_{2}\left[t_{v}, t_{v}+m\right]}^{2} .
$$

Repeat word for word the arguments of Section 6.3 accurate up to the symmetry with respect to the point t_{v}. Consider the interval $\left[t_{v-1}, t_{v+m}\right]$ and two variants of correlation between its two parts $\left[t_{v-1}, t_{v}\right]$ and $\left[t_{v}, t_{v+m}\right]$:
(i') $h_{v-1} \leqslant \kappa_{v}$;
(ii') $h_{v-1} \geqslant \kappa_{v}=h_{v, m-1}+h_{v+m-1}$.
Theorem 1 is completely proved.

7. Comments

The fact that the L_{2}-norm of m th derivative of fundamental spline decays exponentially for arbitrary mesh Δ_{n} (briefly, L_{2}-property) was discovered by C. de Boor [7] and it turned out to be very useful in splineinterpolation problems $[7,9,10]$. An elegant proof of such a property within the variational spline theory is due to Yu. N. Subbotin [10]. Some omissions in his arguments were corrected in [9].

As became recently known to us, the idea to estimate the $L_{2}^{(m)}$-norms of a fundamental spline using integration by parts coupled with Lemmas B and C has been offered earlier by Yu . N. Subbotin as one more method for proving the L_{2}-property (published in the doctoral thesis of his student [2]).

Our approach to C. de Boor's problem described in Section 2 implies that the fundamental spline satisfies the L_{p}-property for $p=1$ and ∞. Now a spline has piecewise polynomial structure and L_{p}-norms of polynomials are equivalent in a fixed interval. Thus, we conclude that the rate of exponential decay of the $L_{2}^{(m)}$-norm of a fundamental spline must depend on the rate of a nonuniformity of the mesh Δ_{n}, and we ought to attain the estimate

$$
\left\|\Phi_{i}^{(m)}\right\|_{L_{2}\left[0, t_{v}\right]}^{2} \leqslant \beta_{*}^{-1}\left(\kappa_{v-m}^{-1} \kappa_{v}+\kappa_{v-m} \kappa_{v}^{-1}\right)^{-1}\left\|\Phi_{i}^{(m)}\right\|_{L_{2}\left[t_{v}, t_{v}+m\right]}^{2}
$$

with a constant $\beta_{*}>1$. The possibility of such an inequality by order is established by Lemmas 3 and 3^{\prime}; in the last one, however, we fail to obtain the exponent required.

The value of β_{1}, which in our method determines the radius of L_{p}-norms, for which the quantity $l_{m-1}\left(\Lambda_{n}\right)_{p}$ is unconditionally bounded, could be practically computed on the basis of the estimates (11)-(12), but they are certainly quite rough. Theoretically, it is possible to compute the exact key constants such as β_{1} (in particular β_{*}) as eigenvalues of some special matrices of order $(2 m-2) \times(2 m-2)$, but in practice, in view of cumbersomeness of matrices involved, we fail to go further than the investigated cases $m=2,3$.

8. Proof of Theorem 2

Define the matrix

$$
A_{p}=A_{p, m-1}\left(\Delta_{n}\right)=\left\{\int_{a}^{b} N_{i p}(t) N_{j p}(t) d t\right\}_{i, j=-m+1}^{n-1}
$$

or order $N \times N$, where $N=n+m-1$. It consists of all possible inner product ($N_{i p}, N_{j p^{\prime}}$) of p - and p^{\prime}-normalized B-splines of degree $m-1$ on mesh Δ_{n}, which were introduced in (8).
C. de Boor [3] proved that

$$
l_{m-1}\left(A_{n}\right)_{p} \leqslant\left\|A_{p}^{-1}\right\|_{l_{p} \rightarrow l_{p}}
$$

Here we give a direct estimate of the norm of the inverse matrix A_{p}^{-1} for $p=\infty$, and this leads to Theorem 2. For this purpose we need two lemmas.

Lemma 4. For each $M \in \mathbb{N}$ and any functions $\left\{f_{i}\right\}_{i=1}^{M}$ and $\left\{g_{i}\right\}_{i=1}^{M}$,

$$
\operatorname{det}\left\{\left(f_{i}, g_{j}\right)\right\}_{1}^{M}=(M!)^{-1} \int_{1^{M}} \operatorname{det}\left\{f_{i}\left(z_{k}\right)\right\}_{1}^{M} \operatorname{det}\left\{g_{j}\left(z_{k}\right)\right\}_{1}^{M} d z
$$

where I^{M} is an M-dimensional cube $[a, b]^{M}$, and $d z=d z_{1} \cdots d z_{M}$.
Lemma 5. For any $m, n \in \mathbb{N}$, and $L \leqslant N=n+m-1$, and $p \in[1, \infty]$

$$
D_{m}^{-L} \leqslant(L!)^{-1 / p}\left\|\operatorname{det}\left\{N_{i_{s}, p}\left(z_{k_{t}}\right)\right\}_{s, t=1}^{L}\right\|_{L_{p}\left(t^{L}\right)} \leqslant 1
$$

Lemma 4 is due to G. Polya and G. Szego [8, Vol. 1, part 2, Problem 68] and can be proved by induction on M. Lemma 5 is derived by induction on L combined with the estimate (9) of Lemma A.

Let us now evaluate the elements of the matrix $A_{\infty}^{-1}=\left\{a_{i j}^{(-1)}\right\}_{1}^{N}$, by the well-known formula

$$
a_{i j}^{(-1)}=\left(\operatorname{det} A_{\infty}\right)^{-1} A_{j i},
$$

where $A_{j i}$ is the algebraic adjoint of an element $a_{j i}$ of the matrix A_{∞} in the determinant $\operatorname{det} A_{\infty}$.

It is not hard to see that for all $p \in[1, \infty]$

$$
\operatorname{det} A_{p}=\operatorname{det} A_{2}
$$

Applying Lemmas 4 and 5, we have

$$
\begin{aligned}
\operatorname{det} A_{\infty} & =\operatorname{det} A_{2}=\operatorname{det}\left\{\left(N_{i 2}, N_{j 2}\right)\right\}_{1}^{N} \\
& =(N!)^{-1} \int_{I^{N}} \operatorname{det}\left\{N_{i 2}\left(z_{k}\right)\right\} \operatorname{det}\left\{N_{j 2}\left(z_{k}\right)\right\} d z \\
& =(N!)^{-1}\left\|\operatorname{det}\left\{N_{i 2}\left(z_{k}\right)\right\}\right\|_{L_{2}\left(I^{N}\right)}^{2} \geqslant D_{m}^{-2 N} .
\end{aligned}
$$

Similarly, for any $1 \leqslant i, j \leqslant N$

$$
\begin{aligned}
\left|A_{j i}\right|= & \left|\operatorname{det}\left\{\left(N_{v \infty}, N_{\mu 1}\right)\right\}_{1, v \neq j, \mu \neq i}^{N}\right| \\
= & (N-1)!\left|\int_{I^{N-1}} \operatorname{det}\left\{N_{v \infty}\left(z_{k}\right)\right\} \operatorname{det}\left\{N_{\mu 1}\left(z_{k}\right)\right\} d z\right| \\
\leqslant & (N-1)!^{-1}\left\|\operatorname{det}\left\{N_{\mu 1}\left(z_{k}\right)\right\}\right\|_{L_{1}\left(I^{N-1}\right)} \\
& \times\left\|\operatorname{det}\left\{N_{v \infty}\left(z_{k}\right)\right\}\right\|_{L_{x}\left(U^{N-1},\right.} \leqslant 1 .
\end{aligned}
$$

Thus, for any $1 \leqslant i, j \leqslant N$

$$
\begin{aligned}
\left|a_{i j}^{(-1)}\right| & \leqslant D_{m}^{2 N}, \\
\left\|A_{\infty}^{-1}\right\|_{l_{\infty} \rightarrow l_{x}} & \sup _{i} \sum_{j=1}^{N}\left|a_{i j}^{(-1)}\right| \leqslant N D_{m}^{2 N},
\end{aligned}
$$

and therefore,

$$
l_{m-1}\left(\Delta_{n}\right)_{\infty} \leqslant N D_{m}^{2 N},
$$

where $N=n+m-1$, and D_{m} is the constant from inequality (9) of Lemma A. Theorem 2 is proved.

Remark. One of the referees has pointed out that he had presented such a result (with an alternative proof) at Columbia at one of the SouthEast Approximation Theory conferences, but he has never published it.

References

1. J. H. Ahlberg and E. N. Nilson, Orthogonality properties of spline functions, J. Math. Anal. Appl. 11 (1965), 321-337.
2. R. Bakiev, Approximation by L-splines and numerical solution to integral and differential equations, Doctoral thesis, Tashkent, 1998. [In Russian]
3. C. DE Boor, The quasi-interpolant as a tool in elementary polynomial theory, in "Approximation Theory" (C. G. Lorentz, ed.), pp. 269-276, Academic Press, New York, 1973.
4. C. DE BOOR, On a max-norm bound for the least-squares spline approximant, in "Approximation and Function Spaces," Proceedings, International Conference, Gdansk, 1979, pp. 163-175, New York, 1981.
5. C. De Boor, A bound on the L_{∞}-norm of L_{2}-approximation by splines in terms of a global mesh ratio, Math. Comp. 30 (1976), 765-771.
6. C. de Boor, On local linear functionals which vanish at all B-splines but one, in "Theory of Approximation with Applications" (A. G. Law and B. N. Sahney, Eds.), pp. 120-145, Academic Press, New York, 1976.
7. C. DE Boor, Odd-degree spline interpolation at a biinfinite knot sequence, Lecture Notes in Math. 556 (1976), 30-53.
8. G. Polya and G. Szego, "Problems and Theorems in Analysis," Springer-Verlag, Berlin, 1972.
9. A. Yu. Shadrin, On approximation of functions by interpolating splines defined on nonuniform meshes, Mat. Sb. 181 (1990), 1236-1255 [in Russian]; Math. USSR-Sb. 71 (1992), 81-99.
10. Yu. N. Subbotin, Spline-approximation, "Theory of Functions and Approximations," Part 1, pp. 81-90, Saratov. Gos. Univ., Saratov, 1983. [In Russian]
