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In this paper we offer a new approach to C. de Boor's conjecture of the
Lx-boundedness of the Lrprojector Ps onto the spline space Sm_d.1.). This
approach is based on the strengthening of the "exponential decay" property of the
fundamental spline. It is proved, first, that the Lp-norm of the operator Ps is
uniformly bounded without any restrictions on the mesh .1. at least in some
neighbourhood of p = 2 and, second, that the Lp-norrn of the operator Ps for all
p E [I, rt)] is uniformly bounded in meshes .1. with a fixed number of nodes n.
© 1994 Academic Press, Inc.

1. INTRODUCTION

For a given partition of the interval [a, b]

denote by Sm _ 1(A,,) the space of splines of degree m - 1 with deficiency 1
on the mesh A" and consider the operator Ps of orthogonal projection
onto Sm_l(A,,), defined by

r [f( t) - Ps(f, t)] 11( t) dt = 0
a

We are interested in the norm of Ps as an operator from Lp on Lp , i.e., in
the quantity

Im_l(A,,)p= sup IIPsm_ilLl.)(f)llp,
II/lip"; 1

pE[I,oo]. (1)

In the study of this quantity the main guide line is given by the following
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Conjecture [3]. For each mEN there is a constant cm such that for all
n E Nand ,1 n C [a, b]

pE[l,oo].

This conjecture is valid for m = 1, 2, 3 (see [4]). For m ~ 4, all known
estimates of (l) depend on either parameters of the mesh ,1 n . The most
improved one which is also due to C. de Boor, looks as follows. Set

lip' := 1 - lip, z + := max(O, z).

THEOREM [5]. For any mEN and arbitrary mesh ,1 n C [a, b]

1m _ 1(,1 n)p ~ cm max (Kj Kj -
I )00

,

I. J

where

pE[l,oo],

The main result of this paper is

THEOREM 1. For any mEN there exists 8 m > 0 such that for each
O~8<t:rn and arbitrary mesh ,1 n c [a,b]

where

1m _ 1(L1 n)p ~ cm., max (KjKj-
1

)0,
'.J

pE [1,00],

() :=(),:= (l/2-8-1Ip)+ + (l/2-e-llp')+;

in particular for each 0 ~ 8 < 8 m , uniformly in n E Nand ,1 n C [a, b],

[
48 4eJ

p E 2 - 1 + 28' 2 + 1_ 28 .

In addition we prove

THEOREM 2. For any mEN there exist 'm' cm < 00 such that for any
n EN, uniformly in ,1 n C [a, b],

pE[l,oo].

Thus, it follows that, first of all, the L-norm of the operator Ps of
orthogonal spline projection is uniformly bounded without any restrictions
on the mesh ,1 n in some neighbourhood of p = 2 and, second, the Lp -norm
of the operator Ps for all p E [1, 00] is uniformly bounded in meshes L1 n with
a fixed number of nodes n.
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2. PROOF OF THEOREM 1

In Section 3 we construct an orthonormal basis C{J = {C{J i} 7:{" - 1 for the
space Sm_l(An), and in Sections 4--6 we show that its elements satisfy the
following exponential estimate for decay of Lp-norms taken over the sub
intervals of the mesh Lf n-

Set

Kmax := max K j ,

j

LEMMA 1. For any mEN there exists em> 0 such that for any 0,,;; e < em
there exists )., = ).• < 1, for which for arbitrary mesh An C [a, bJ for all
amissible i, j,

(2)K 1/p - 1/ 2
i-m '

x

1 1
K~_mK~ax' 2:+ e<j;";;1.

Assuming this estimate proved, write down the standard expression for
the orthoprojection of the functionf E L p onto the space Sm_l(Lf n) in terms
of the elements of the orthonormal basis C{J:

N b

Ps(f, x) = L C{J;(x) f C{Jj(t) f(t) dt,
i= 1 a

where N = n +m -1. For p E [1, 00 J, lip' = 1 - lip set

11·11/= 11-IILp[tl. 11+1]' II-II; = 11'IILp[IIoI/+!J'

Then, by virtue of Holder and Minkowski inequalities with the help of (2)
we obtain

N n-l

IIPs(f, -)lIk";; L 1IC{J;llk L IIC{Jjll; IIf11 j
j~ 1 j~O

N n-l

,,;; Cm(T~ L ).,Ij-kl L )."i-j'llfll j
i~ 1 j=O

n-l N

=Cm(T~ L Ilfll j L AY-kl).,li-jl
j~O i~ 1

n-l

";;Cm•• (T~ L /k-j/)",k-j'llfll j,
j~O
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i.e.,
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n --1

liPS(f, . )11 k ~ em. £a~ L Ik - jl 21k - JI [[!IIj'
j=O

In the final estimate we use Young's inequality:

Theorem I is proved.

We obtain a desired orthogonal spline basis as derivatives of appropriate
fundamental splines; this idea goes back to J. H. Ahlberg and E. N. Nilson
[I ].

Complete the mesh.1 n with the points {t_v}~~/ and {tn+v}~':/ which
coincide with the endpoints of the interval [a, b]:

t -v = to = a,

and denote the extension again by .1 n'

Consider the family of splines cP = {cP i}7:;' - 1 of degree 2m - I from the
set S2m _ 1(.1 n), defined by

cPj=arg min {lIg(m)112: g(tj)=b,j,j= -m+ I, n.
ge w~

Here, it is implied that

cP lll)(a) = 0,

cP~l'lv(b)=O,

J1. = 0, m - I, i = 1, n +m - I;

cP~\'lv(b)=l, J1.=O,v-l, v=l,m-l.
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These are the fundamental splines on the widening meshes
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which satisfy, besides the above interpolating conditions, the following
boundary conditions

cPjm+Jl)(t;)=o,

cP~m+~Jl)(b)=O,

Using the equalities

j.1.=O,m-2,

j.1.=O, m-2-v,

i=G;

v=l,m-2.

cPiIJn;=O, i> l,

it is not hard to verify that the family cP with number of elements
n + m - 1, which is equal to the dimension of the space Sm ~ 1(.,1 n), turns
out to be a system, orthogonal with respect to the inner product

(cP j, cPj ) =rcP jml(t) cP ;m)(t) dt.
a

Hence, it follows that the system cp = {cp j } 7::;" - I, consisting of the elements

is an orthonormal basis for Sm_I(,1 n).
The classical basis for the space Sm-dLl n) IS the one {Nj};:~m+1 of

B-splines with minimal supports:

Since

supp cp;= (t -m+ I' t;),

the system cp = {cP i} 7::;" - I constructed is the result of the Gram-Schmidt
orthogonalization process applied to the basis of B-splines.

4. PROOF OF LEMMA 1 FOR P ~ 2

In this section we derive the estimate (2) for p E [2, 00]. The arguments
used are based in turn on two statements which are proved in Section 6.

LEMMA 2. For all p E [2, 00] and all j < i
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where the sum is over all indices)' such that

j' +m~i. (3)

LEMMA 3. There exists PI = PI (m), for which, for all v such that
tV+l~ti'

IlqJillL[o, I,] ~ 131 1
(l + K;-.!mKv-m+ d- I

IlqJiIlL[I,_m+" IHl]'

The "one-sided" character of the statements presented is connected with
special features of the splines qJi: from the definition qJi(X)=O for x~tj;

thus the estimate (2) is to be proved only for indices j < i. Just the same
statements (with corresponding changes in formulations) are valid for the
mth derivatives of the usual "two-sided" fundamental splines.

Put

'7 := '7. := min {e, 11/2 - l/pl };

thus, in the case P~ 2 we have

() = (). = (1/2 - e - l/p) +,

'7 = '1. = min(e, 1/2 - l/p),

1/2 - l/p = () + '7

Now the estimate (2) for p ~ 2 is deduced in two steps.

(A) The case j> i-2m, and hence min(3))' > i-3m.

Applying Lemma 3 as much as it is required, we have

II 11
2 ~p-li-j'-ml (1 + -I )-1 II 11 2

qJj Lj[O,Ij'+m] "" 1 Kj' K i - m qJj Lj[O, Ii];

whence for all 0 ~ e~ ! and A< 1

- 1 + 21p II 11 2
Kj' qJj Lj[Ij',Ij'+m]

~ (1 p- 2m) -20 -2~(1 + -1 )-1 II 11 2"" max 'I Kj' Kj' Kj , Kj- m qJj Lj[O. 'i]

~ (1 p- 2m ) , -2mlli-jl -20 -2~ II 112"" max '1 It It K min K j _ m qJj Lj[O, Io]

and to get the estimate (2) we have only to use Lemma 2.

(B) The case j ~ i-2m, and hence max(3) j' ~ i-2m,

From Lemma 3 it follows that there exists 13,

13 = Pm ~ 13';',
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(4)

for which for aU v, such that tv + m~ t i' the inequality

IICfJ,lIi2[o",] ~ p- l
(1 + K;~mKv)-1 IICfJiIlL[I"'Hm]

is valid, With regard for the representation

IICfJiIlL[o, I,] = IICfJilli2[0, l,-m] + IICfJ,IIL[I,_m,"]

series of such inequalities with v E {j' + Ilrn };:'= 0 implies the following
estimate,

(b) For all j', such that j' ~ i-2m,

II CfJ,II L[ti', li+m] ~ IICfJ,II L[o, li+m]

~tOo (l + P(l +Kj-;-~l'mKj'+(j.'+I)m))}-1

X IICfJi\\L[O,li'+m]'

Here, kij= (i' - j')/m, and i' is such of indices from the sequence
{j' + Jlm} :~o that

i-2m < j' ~ j - m.

Hence, for the sake of brevity putting Pi = /( i /( i-+
1
m' we have

- I + 2/1' II 11 2
Kj' CfJ, L2[1},I}+m]

~ /(j-;-2fJ xtOo (p;'~+!Jm(l + P(l + pj-:-l!Jm)))} -I

X /(i-:-2~ IICfJiIIL[o.li'+m]' (5)

The first multiplier in the right-hand side is treated trivially

Considering the second one, define for p ~ 2 the value e::' as an upper
bound for such e~ 0 which satisfy

min ((1 + P) p2e + Pp 2e - 1
) ~ 1 + be

1'>0

with some be> O. The value of the minimum for 0 ~ 2e ~ 1 is equal to

whence

min( 1, P) ~ 2e: ~ 1.

(6)
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Hence for any e E [0, e':') the majorant for the expression in the curly braces
is just the quantity

An estimate for the last multiplier in (5) is obtained from (A):

• -2~ II 11 2
K i , qJi L2[O,I"+,,,]

~ (1 /3 -m) 1 -,m 'li-i'I .-2~ II 11 2
"" max , 1 Af. Af. K i _ m qJi L2[O, I;]'

Linking all estimates in one, from (5) with regard for the inequality
Ii - J'I < m, we find

K - 1 + 2/p II m 11 2
l' 't'i L2[O.I;,+",]

~ (I /3 - m) 1 - 2m ) Ii - 11 - 20 • - 2~ II 11 2"" max , 1 A E '£ K min K i _ m qJi L2[O, I,]

and for the final estimate (2) we refer to Lemma 2 once more.
Lemma 1 for the case p ~ 2 is proved with em = e.:,.

If we set in (5) p = 00, e=~, then we come to the relation

Thus,

(7)

which makes evident that L~)-norms of fundamental spline taken over the
subintervals of arbitrary mesh An, if suitably normalized, are at least finite,
and if the constant /3= Pm, defined from inequality (4), satisfies the
estimate P> 1, then such norms have exponential decay.

5. PROOF OF LEMMA 1 FOR P :( 2

To derive the estimate (2) for p ~ 2 we use just the same approach as in
the previous case; however, the technical details differ somewhat. The
corresponding auxiliary statements are the following.

LEMMA 2'. ForallpE[1,2] andalli<i-m

where multiplication is over all indices j' such that

j' +m ~ i. (3' )
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Unlike Lemma 2, this statement can be readily proved, since

and we have only to majorize the right-hand side.
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LEMMA 3'. There exists PI = PI (m), for which, for all v such that
t v + m ~ (,

Illp,ll Lro. t,] ~ Pi l
( 1+ K v _ I K; I )-1 IIlp,ll i,r". IHm]'

Let us proceed with the proof of (2) for p ~ 2. Now

1]=1],=min(e,llp-1/2);

therefore,

lip - 1/2 = e+ 1].

(A ~ ) The case j ~ i - m.

The estimate (2) is evident: for all 0 ~ e~ ~ and ), < I

(A;) The case i-2m ~ j < i - m.

Divide the indicesj' satisfying (3') into two parts. For the first one write
the trivial estimate

i-2m <j' ~ i-m,

and for the second-by virtue of Lemma 3'-the inequality

Illp,IILr,j'. tj'+m] ~ Pl1(1 + Ki'+m-IKJ~lm)-1 IllpjllLro, 1,1'

i-3m < .i' ~ i-2m.

Multiplying the left- and the right-hand sides of the above relations over
the indices j' = j - m + 1, j, we obtain

i-m

TI Illp,ll Lr,j', tj'+m] ~ Illp,1117ro. Ii] TI PI-1(l + KI' _ 1K; 1)-1
J' 1'=J'+m
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Extracting the roots of mth degree and applying Lemma 2', find that for all
o~ e~ 112m and A. < 1

IlfPili L[I). 1/+ ,]

~max(l, fJI I
) K;oK;~(1 +Kj_1Ki~lm)~l/m IlfPilli2[0,1,]

& (1 R - I) 1 - 2m 1 Ii - jl 28 2~ II 11 2""max, Pl/'· /I. KmaxKj-m fPj L2[0,li]'

(H') The case j < i-2m, and hence, max(3') i' < i-2m.

For 1~ s ~ m put j: := j - m + s and (like in Section 4) denote by i: an
index from the sequence U: + .um }::., 0 such that

i-2m < i', ~ i - m.

With regard to the representation

II fPjll L[o, I,] = II fPill L[o, I,-m] + II fPill i 2[1.- m , I,]

the reiterated use of Lemma 3/ gives

(b'd For all i:, such that i: < i-2m,

IlfPjll L[I);. '),+m] ~ IlfPjll LEO. 'j,+m]

~ tOo (1 + fJI(l + Kj;+ I'm-I Kj;~ I'm))} ~ I

X IlfPiIIL[o.li,]'

Multiplying the left- and the right-hand sides of these inequalities over
j:=j-m+ I,j, we have

(b;) For j<i-2m and)' such thati-m<)'~j,

Further, extract the root of mth degree and repeat the arguments from
Section 4. Moreover, the limiting value e;:: *, which implies for ! ~ lip <
~+e;::* the exponential estimate of Lp-norms of fPj, is defined as an upper
bound of e such that

min ((l + fJ d p2m. + fJ 1P2m. - 1) ~ 1+ c5 n
p>O

and it satisfies the inequality

min(l, fJd ~ 2me;::* ~ 1.

(6')
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At last we obtain that for e E [0, e;:: *)
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which completes the proof of Lemma 1 for p ~ 2 with em = e;::*.
Thus, we establish the estimate (2) with em = min(e.:" e;::*), where the

quantities e.:, and e;:: are define in relations (6) and (6') by values of the
constants Pand PI' which in turn appear in the statements of Lemmas 3
and 3' and in inequality (4 ).

These relations, however, have principal limitations (due to the methods
of the proof) in the following sense. If in (6) the estimate P> 1 is valid, then
we obtain e.:, =~, and if we could get the same bound for the quantity e;::*,
then de Boor's conjecture would be proved. But in (6'), whatever values the
constant PI takes, we cannot exceed the limit e;::* = 2:". In particular, this
drawback does not allow us to get the estimate for the L\m)-norm similar
to (7); therefore, to prove Theorem 2 we use other methods.

6. PROOF OF MAIN INEQUALITIES

6.1. Auxiliary Statements

Set

Further, for the elements of the basis {N/} 7: ~m + I of normalized B-splines
which satisfy the conditions

define the splines

pE[1,w]. (8)

While proving Lemmas 2, 3, 3' we rely upon the following statements.

LEMMA A. For any vector a=(a/)7:~m+lfor pE [1,02]

D;;.I Ilall/p ~ III a,N,pll ~ lIall,p'
Lp[O, I]

D;;.lm1iP la,1 ~ IIIa,N,pll .
Lp[t •. ,l\'+m]

(9)



342 ALEKSEI SHADRIN

LEMMA B. If gE W;'[O, 1] and g(tv+,,) =0, It = 0, m -1, then

II (m-l-k)11 ~c hk + 1!2 II (m)11g L"'[t'.t'+m-l]'" I.m.k v,m-l g L2[t"tnm-l]'

k=O, m-1.

LEMMA C. If g E 1t 2m _ 1 (i.e., is an algebraic polynomial of degree
2m -1), then

k=O, m-l.

The last auxiliary statement is concerned with the fundamental splines
{ct>,}7:t- l

, which determine the orthonormal system qJ= {qJ;}7:t- 1 by
the rule qJi = ct>~m)/IIct>~m)h

LEMMA D. There exists /30 = /30(m) for "",hich, for all v such that
t v + m - l < t i ,

Lemma A is due to C. de Boor [6]. Lemma B, if we do not care for
exact constants, is elementarily proved by virtue of the Rolle theorem.
Lemma C is a Markov-type inequality for different metrics and when exact
constants are not required uses nothing more than finite dimensionality.
Lemma D is what the "exponential decay" property of a fundamental
spline is based on and is proved, e.g., in [9].

6.2. Proof of Lemma 2.

Expand the spline qJ i in the basis {N,p} for p = 2:

n -~ 1

qJ, = I b,N'2'
'=m+l

For a given j define the spline l{!j by

j

l{!j= L b,N'2'
'~j-m+ 1

Then l{! j == qJ i In the interval [tj , tj + I] and application of Lemma A for
p~2 gives
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IIClJil1 ip[tj. ti+tl = I/IjIJ i,[tj.lj+tl

~ Cm L~jtm + 1 (K i-
I

+ 2IPb?YI2} Zip

j

~Cm L Kil+ZIPb;

I~j-m+ I

j

:<' ~ - I + Zip II liz
"" Cm L, K, ClJj L2[1/,I/+ rn ]>

l~j-m+1

which is required.

6.3. Proof of Lemma 3.

Since

it suffices to show that if v satisfies the condition tv + I ~ t j, then
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IlcP~m)IIL[o.I,] ~ p11(1 + K;lmKv-m+ I)-I IlcP~m)IIL[I,_rn*I''HI]' (10)

Consider two possible variants of correlation between the parts
[tv, t v+ I] and [tv -m' tv] of the interval [t,,_ m' tv+ I].

(i) hv~Kv_m'

Then,

i.e.,

Combining this estimate with Lemma C, derive that

II cP~m) II i 2(o, t,] ~ (1 + Pa I) 1/ cP;m) II i2(t,-rn+ I, t,]

~ (1 + Pal) IlcP~m)IIL(I,_rn+l,tHl]

~ 3(1 + Pa l )(1 + K;lmKv_m+ I)-I 1111l;m)IIL(I,_rn+l,t,+tl.

Thus, in case (i) estimate (to) holds with

PI = ~(1 + Pal)-I.

(ii ) hv ~ K v _ m = hv _ m + h" - m + I, m - 1 .

640/77/3-9

(11 )
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The fundamental spline l/J i has a piecewise polynomial structure and
An, i_I-mesh of zeroes. So, integrate the quantity 11l/J~m)11 ~2[O, I,] by parts
and apply Lemmas Band C:

X 11l/J(m+k)11
i L,:o [l~" I y + I]

m-I
,::: '" (h h - I )k + ]/2'" L. C 1,m.k C 2.m.k v-m+l.m-1 v

k~O

x 11l/J~m)IIL2[1,_m+l. I,] 11l/J~m)IIL2[1" IHI]

~ 2
1
/
2
C3• m K~/~ mK;!~ +]

In the final inequality of this series we had put

m-I
C -" C C3.m- L. I.m.k 2.m.k

k=O

and had used the relations

K v - m ~ h v - m + I, m - 1,

which followed from (ii).
Thus, we obtain

IIl/Jjm11IL[o. I,] ~ 2C~.mKv_mK,:-!m+] IltPjm)IIL[I,_m+l. ',+1]

~4c~,m(1 + K;!mKv_m+ 1)-1 1Il/J~m)IIL[t,_m+I.IH1]'

i.e., the estimate (10) with such value for f3]:

6.3. Proof of Lemma 3'.

We must show that under the condition tv+m~ti

(12)
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Repeat word for word the arguments of Section 6.3 accurate up to the sym
metry with respect to the point tv' Consider the interval [tv-I' tv+mJ and
two variants of correlation between its two parts [tv _ I' tv J and [t", tv + m]:

(i') h v _ 1 ~ K v ;

(ii') hv_ 1 ~Kv=hv,m~l +h,'+m_I'

Theorem I is completely proved.

7. COMMENTS

The fact that the L2 -norm of mth derivative of fundamental spline
decays exponentially for arbitrary mesh An (briefly, L 2 -property) was
discovered by C. de Boor [7] and it turned out to be very useful in spline
interpolation problems [7,9, 10]. An elegant proof of such a property
within the variational spline theory is due to Yu. N. Subbotin [10]. Some
omissions in his arguments were corrected in [9].

As became recently known to us, the idea to estimate the L~m)-norms of
a fundamental spline using integration by parts coupled with Lemmas B
and C has been offered earlier by Yu. N. Subbotin as one more method for
proving the L2 -property (published in the doctoral thesis of his student
[2] ).

Our approach to C. de Boor's problem described in Section 2 implies
that the fundamental spline satisfies the Lp-property for p = I and 00. Now
a spline has piecewise polynomial structure and Lp·norms of polynomials
are equivalent in a fixed interval. Thus, we conclude that the rate of
exponential decay of the L~ml.norm of a fundamental spline must depend
on the rate of a nonuniformity of the mesh An, and we ought to attain the
estimate

with a constant P* > 1. The possibility of such an inequality by order is
established by Lemmas 3 and 3'; in the last one, however, we fail to obtain
the exponent required.

The value of PI' which in our method determines the radius of
Lp-norms, for which the quantity 'm-I(An)p is unconditionally bounded,
could be practically computed on the basis of the estimates (11 )-(12), but
they are certainly quite rough. Theoretically, it is possible to compute the
exact key constants such as PI (in particular P*) as eigenvalues of some
special matrices of order (2m - 2) x (2m - 2), but in practice, in view of
cumbersomeness of matrices involved, we fail to go further than the
investigated cases m = 2, 3.
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Define the matrix
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8. PROOF OF THEOREM 2

A p= A p, m _ 1(.1 n) = {f Njp(t) Njp,(t) dt}n-I
a I.J~-m+1

or order N x N, where N = n + m - 1. It consists of all possible inner
product (N jp , Njp') of p- and p'-normalized B-splines of degree m-l on
mesh .1 n , which were introduced in (8).

C. de Boor [3] proved that

1m -I (.1 n)p ~ IIA p-11l/
p
_I

p
'

Here we give a direct estimate of the norm of the inverse matrix A; 1 for
p = 00, and this leads to Theorem 2. For this purpose we need two lemmas.

LEMMA 4. For each MEN and any functions {Ii}~ 1 and {gj} ~ I'

where 1M is an M-dimensional cube [a,b]M, and dz=dzl· .. dz M.

LEMMA 5. For any m,nEN, and L~N=n+m-l, andpE[I, 00]

D;;/ ~ (Ll)-I/P Ildet{Nj,.p(zk)}~I~ llILp(lL) ~ 1.

Lemma 4 is due to G. Polya and G. Szego [8, Vol. 1, part 2,
Problem 68] and can be proved by induction on M. Lemma 5 is derived by
induction on L combined with the estimate (9) of Lemma A.

Let us now evaluate the elements of the matrix A ~ I = {a&-I)} ~, by the
well-known formula

(-I)-(dtA )-IA
aij - e 00 ji'

where Ajj is the algebraic adjoint of an element aji of the matrix AX) in the
determinant det A 00'

It is not hard to see that for all p E [1, 00]

det A p = det A 2 •

Applying Lemmas 4 and 5, we have

det A oc = det A 2 = det {(Nj2 , Nj2 )}~

= (N!)-I f det{Nj2 (zd} det{Nj2(zk)} dz
IN

= (N!)-l IIdet{Ndzk)}IIL(lN)~D,;;2N.
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Similarly, for any 1::;;; i, j::;;; N

IAjil = Idet{(Nvoo , Nll d}f,v#j,ll#il

= (N -1)! It-l det{Nvoo(zd} det{ NIlI(zd} dzl

::;;; (N -l)!-I Ildet{NIl1(Zk)}IILl(lN-l)

x Ildet{Nvoo(zd}IILx(lN-l)::;;; 1.

Thus, for any 1 ::;;; i, j::;;; N

N

IIA~llIloo~lx =sup L: la~-I)I ::;;;ND;:,
i j= I

and therefore,
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where N = n +m - 1, and Dm is the constant from inequality (9) of
Lemma A. Theorem 2 is proved.

Remark. One of the referees has pointed out that he had presented such
a result (with an alternative proof) at Columbia at one of the SouthEast
Approximation Theory conferences, but he has never published it.
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